
Carbotech
Carbotech CT28906R Brake Pads
from $344.00
Carbotech CT28906R Performance & Racing Brake Pads
Precision braking starts here. The Carbotech CT28906R brake pads offer world-class stopping power across a range of compounds engineered for HPDE, club racing, time trials, and daily driving. Whether you're shaving tenths at a national event or building consistency during weekend track days, there's a Carbotech compound tailored to your performance goals.
Manufactured in the USA using Carbotech’s proprietary ceramic and metallic formulations, these pads deliver unmatched modulation, rotor friendliness, and fade resistance.
Friction materials have evolved significantly over the years. Brake pads were originally made with organic ingredients such as asbestos and carbon, held together by a strong resin. Most brake pads sold today are considered semi-metallic, semi-metallic brake pads use brass, copper, and steel wool shavings held together by a resin. Unfortunately, the main drawback about the use of steel strands, iron, graphite, and small amounts of filer and friction modifiers (used to provide strength and conduct heat away from the rotors) is that the metal shavings and iron must rub against steel rotors every time the brakes are applied. This generates more noise and is a lot more abrasive on the rotors. It also creates corrosive dust that can damage your braking system as well as the paint on your wheels and car.
Friction materials that contain Ceramic Kevlar formulations have become recognized for their desirable blend of traits. This allows the Ceramic Kevlar pads to handle higher brake temperatures with less heat fade, and provide faster recovery after heavy braking. It also reduces brake dust and makes wheel maintenance easier!
Ceramic Kevlar compounds extend brake life compared to most other semi-metallic and organic materials, and at the same time they outlast other premium pad materials by a significant margin, without compromising in noise control, pad life, and all around braking performance.
The CT28906R shape fits a variety of high-performance applications, making it a go-to solution for drivers looking for track day brake pads that match their skill level and intensity.
Carbotech CT28906R Brake Pad Highlights
Multiple compounds available to match driving style and track conditions
Fade-resistant ceramic-metallic formulations designed for extreme temperature stability
Rotor-friendly design ensures longer disc life and reduced operating costs
Made in the USA with race-proven quality and compound development
Perfect for HPDE, time trials, autocross, club racing, and pro-level motorsports
Compatibility – Will They Fit Your Car? The CT28906R will fit the following applications:
Chevrolet Corvette C8 Z06 Iron Rotors (Rear) 2023+
Chevrolet Corvette C7 Z07 Iron Rotor Conversion (Rear) 2015-2019
Available Compounds for the Carbotech CT28906R Brake pad
1521: street compound designed for spirited street driving. Low dust and quiet operation with high initial bite. 1521 friction coefficient rated at 0.47.
AX6: Autocross-focused compound offering more initial bite than 1521. Great for Solo and light-duty track use where cold bite matters. AX6 friction coefficient rated at 0.50.
RP2: Ideal for racers seeking durability and rotor life in endurance club racing. Very low wear rates and excellent release characteristics. RP2 friction coefficient rated at 0.50.
XP8: Entry-level race compound perfect for advanced HPDE and club racing. Consistent torque and excellent modulation under high heat. XP8 friction coefficient is rated at 0.56.
XP10: Mid-tier race pad with higher bite and fade resistance than XP8. Excellent for time trials, wheel-to-wheel racing, and aggressive HPDE. XP10 friction coefficient is rated at 0.60.
XP12: Designed for heavier cars or high-speed tracks. High torque levels and consistent performance across wide temperature ranges. XP12 friction coefficient is rated at 0.65.
XP20: Ultra-high torque and friction. For drivers who demand maximum stopping power in pro-level racing environments. XP20 friction coefficient rated at 0.68.
XP24: Highest friction compound in the Carbotech lineup. Built for pro racing applications requiring peak performance and extreme heat tolerance. XP24 friction coefficient rated at 0.70.
Carbotech 1521
The Carbotech™ 1521™ is a high-performance street compound. The 1521™ compound is known for its release and modulation, along with unmatched rotor friendliness. 1521™ is also a low dust and low noise compound with an excellent initial bite. This compound's excellent linear torque production provides incredible braking force without ABS intervention. Carbotech™ 1521™ operating range starts out at ambient and goes up to 800°F (426°C+). 1521™ is suitable for ALL street cars, perfect for your tow vehicle or fleet vehicle. Carbotech™ 1521™ is NOT recommended for track use.
Carbotech AX6
The AX6™ is specifically engineered for Autocross applications. A high-torque brake compound delivering reliable and consistent performance over a wide operating temperature range of 50°F to 1000°F + (10°C to 537°C+). The advanced compound matrix provides an excellent initial bite, high coefficient of friction at lower temperatures along with very progressive brake modulation and release characteristics. NOT FOR STREET USE!
Carbotech RP2
The RP2™ compound was engineered for endurance racing based on our highly successful XP™ Series formulations. RP2™ has a strong initial bite, a little less modulation than our XP12™, but still maintains the rotor friendliness of our XP™ series compounds. RP2™ has great fade resistance with a temperature range of 250°F to 1450°F+ (121°C to 787°C). RP2™ is as rotor friendly as our XP™ series compounds. NOT FOR STREET USE!
Carbotech XP8
A high torque brake compound with a wide operating temperature range of 200°F-1250°F+ (93°C to 676°C+). Carbotech™ XP8™ is their first racing compound. It provides good initial bite at race temperatures, high coefficient of friction, excellent modulation, and release characteristics. XP8™ offers extremely high fade resistance and is very rotor friendly. It's perfect for track day use with any tire. NOT FOR STREET USE!
Carbotech XP10
When Carbotech™ unleashed the XP10™ it immediately gathered multiple regional, divisional, and national championships. The XP10™ has a strong initial bite with a coefficient of friction and rotor friendliness unmatched in the industry. Fade resistance is in excess of 1475°F (801°C). XP10™ still maintains the highly-praised release, excellent modulation and rotor friendliness that have made all Carbotech™ compounds so successful. NOT FOR STREET USE!
Carbotech XP12
Another highly successful XP™ series compound with an excellent initial bite, torque and fade resistance over and above the XP10™ compound. XP12™ has a temperature range of 250°F to 1850°F+ (121°C to 1010°C+). The XP12™ has that excellent Carbotech™ release and modulation that has made all other Carbotech™ compounds so successful. The XP12™ is more rotor aggressive than XP10™ but compared to the competition the XP12™ is still very rotor friendly. NOT FOR STREET USE!
Carbotech XP20
XP20™ is the latest iteration of the highly successful XP™ series of compounds. With an extremely aggressive initial bite, linear torque curve and excellent fade resistance the XP20™ is a major step in a progression of the XP™ series of compounds from Carbotech™. XP20™ has a temperature range of 275°F to 2000°F+ (135°C to 1093°C+). Carbotech™ XP20™ maintains our tradition of having the outstanding release and modulation that has made all other Carbotech™ compounds so successful. NOT FOR STREET USE!
Carbotech XP24
XP24™ is the pinnacle compound of the extremely successful XP™ Series of compounds engineered by Carbotech™. This compound is based on the same fundamentals that exist in all other Carbotech™ formulations. XP24™ has even more initial bite, more overall bite, and more torque along with the most linear torque curve we have ever offered. The thermal characteristics are of the highest Carbotech™ offers along with one of the highest coefficient of friction ratings offered by anyone in the braking industry. This compound is the longest wearing compound Carbotech™ offers as it was originally engineered for endurance applications at the highest pro racing levels. This revolutionary new compound has been extremely successful with an open wheel, closed wheel, sprint, and endurance applications. XP24™ has a temperature range of 400°F to 2000°F+ (204°C to 1093°C+). NOT FOR STREET USE!
Carbotech CT28906R Frequently Asked Questions (FAQ)
1. Which Carbotech compound is best for daily driving?
1521 is ideal for spirited street use with minimal dust and noise..
2. What’s the best compound for beginner HPDE drivers?
XP8 is a great starting point for advanced HPDE, offering strong bite and fade resistance without being overly aggressive.
3. Can I mix Carbotech compounds front and rear?
Yes, many drivers use a more aggressive compound in the front (e.g., XP12) and a slightly less aggressive one in the rear (e.g., XP10) to fine-tune balance.
4. Are Carbotech pads hard on rotors?
No. All Carbotech compounds are known for being rotor-friendly, helping reduce rotor wear and operating costs.
5. Which compound is best for endurance racing?
RP2 is engineered specifically for long-distance events where pad and rotor life are just as important as torque output.
6. Do Carbotech pads require special bedding procedures?
Yes. A proper bedding-in process is critical for optimal performance. Carbotech provides detailed bedding instructions with every set of pads.
Carbotech Brake Pad Bedding Procedures
The bedding process transfers friction material from the pads into the pores of the brake rotor. It also matches the microscopic contours of the pads and rotors to increase surface contact. Proper bedding of pads & rotors will result in greater performance, longer pad life & less rotor wear. Failure to properly bed in your pads could lead to friction materials chunking and breaking up. This could also lead to overheating your pads and causing them to glaze over resulting in the car not being able to stop or slow fast enough.
All new brake pads require a bedding process. The proper way to bed your brake pads and brake discs (rotors) is to bed them on the racetrack, NOT on the street. Start this process by pumping your brakes a few times to assure proper installation. Once on track perform several moderate (medium) near stops (to a very slow rolling speed) to thoroughly warm up the pads and rotors. This should take 1-2 laps. This allows a thin layer of the pad material to be transferred into the micro-grooves of the rotor.
After the pads/rotors are warm, perform a series of hard near stops (to a slow rolling speed) until some brake fade is felt. This process should take about 2-4 laps (depending on the track). Once this occurs, then stay off the brakes (as much as possible) and bring your car into the pits/paddock to completely cool. Do not lock the tires during this operation.
Allow brake pads and/or rotors cool down to ambient temperatures; no less than 30 minutes. The total bedding procedure should not take more than 5-6 laps or about 10-15 minutes. Failure to properly bed in your pads could cause friction material to chunk and break up resulting in poor pad performance and pad life. Improper bedding can also lead to overheating your pads and causing them to glaze over, resulting in the car not being able to stop or slow properly.

Carbotech
Carbotech CT1405 Brake Pads
from $373.00
Carbotech CT1405 Performance & Racing Brake Pads
Precision braking starts here. The Carbotech CT1405 brake pads offer world-class stopping power across a range of compounds engineered for HPDE, club racing, time trials, and daily driving. Whether you're shaving tenths at a national event or building consistency during weekend track days, there's a Carbotech compound tailored to your performance goals.
Manufactured in the USA using Carbotech’s proprietary ceramic and metallic formulations, these pads deliver unmatched modulation, rotor friendliness, and fade resistance.
Friction materials have evolved significantly over the years. Brake pads were originally made with organic ingredients such as asbestos and carbon, held together by a strong resin. Most brake pads sold today are considered semi-metallic, semi-metallic brake pads use brass, copper, and steel wool shavings held together by a resin. Unfortunately, the main drawback about the use of steel strands, iron, graphite, and small amounts of filer and friction modifiers (used to provide strength and conduct heat away from the rotors) is that the metal shavings and iron must rub against steel rotors every time the brakes are applied. This generates more noise and is a lot more abrasive on the rotors. It also creates corrosive dust that can damage your braking system as well as the paint on your wheels and car.
Friction materials that contain Ceramic Kevlar formulations have become recognized for their desirable blend of traits. This allows the Ceramic Kevlar pads to handle higher brake temperatures with less heat fade, and provide faster recovery after heavy braking. It also reduces brake dust and makes wheel maintenance easier!
Ceramic Kevlar compounds extend brake life compared to most other semi-metallic and organic materials, and at the same time they outlast other premium pad materials by a significant margin, without compromising in noise control, pad life, and all around braking performance.
The CT1405 shape fits a variety of high-performance applications, making it a go-to solution for drivers looking for track day brake pads that match their skill level and intensity.
Carbotech CT1405 Brake Pad Highlights
Multiple compounds available to match driving style and track conditions
Fade-resistant ceramic-metallic formulations designed for extreme temperature stability
Rotor-friendly design ensures longer disc life and reduced operating costs
Made in the USA with race-proven quality and compound development
Perfect for HPDE, time trials, autocross, club racing, and pro-level motorsports
Compatibility – Will They Fit Your Car? The CT1405 will fit the following applications:
Chevrolet Corvette C8 Z06 Iron Rotors (Front) 2023+
Chevrolet Corvette C7 Z07 Iron Rotor Conversion (Front) 2015-2019
Available Compounds for the Carbotech CT1405 Brake pad
1521: street compound designed for spirited street driving. Low dust and quiet operation with high initial bite. 1521 friction coefficient rated at 0.47.
AX6: Autocross-focused compound offering more initial bite than 1521. Great for Solo and light-duty track use where cold bite matters. AX6 friction coefficient rated at 0.50.
RP2: Ideal for racers seeking durability and rotor life in endurance club racing. Very low wear rates and excellent release characteristics. RP2 friction coefficient rated at 0.50.
XP8: Entry-level race compound perfect for advanced HPDE and club racing. Consistent torque and excellent modulation under high heat. XP8 friction coefficient is rated at 0.56.
XP10: Mid-tier race pad with higher bite and fade resistance than XP8. Excellent for time trials, wheel-to-wheel racing, and aggressive HPDE. XP10 friction coefficient is rated at 0.60.
XP12: Designed for heavier cars or high-speed tracks. High torque levels and consistent performance across wide temperature ranges. XP12 friction coefficient is rated at 0.65.
XP20: Ultra-high torque and friction. For drivers who demand maximum stopping power in pro-level racing environments. XP20 friction coefficient rated at 0.68.
XP24: Highest friction compound in the Carbotech lineup. Built for pro racing applications requiring peak performance and extreme heat tolerance. XP24 friction coefficient rated at 0.70.
Carbotech 1521
The Carbotech™ 1521™ is a high-performance street compound. The 1521™ compound is known for its release and modulation, along with unmatched rotor friendliness. 1521™ is also a low dust and low noise compound with an excellent initial bite. This compound's excellent linear torque production provides incredible braking force without ABS intervention. Carbotech™ 1521™ operating range starts out at ambient and goes up to 800°F (426°C+). 1521™ is suitable for ALL street cars, perfect for your tow vehicle or fleet vehicle. Carbotech™ 1521™ is NOT recommended for track use.
Carbotech AX6
The AX6™ is specifically engineered for Autocross applications. A high-torque brake compound delivering reliable and consistent performance over a wide operating temperature range of 50°F to 1000°F + (10°C to 537°C+). The advanced compound matrix provides an excellent initial bite, high coefficient of friction at lower temperatures along with very progressive brake modulation and release characteristics. NOT FOR STREET USE!
Carbotech RP2
The RP2™ compound was engineered for endurance racing based on our highly successful XP™ Series formulations. RP2™ has a strong initial bite, a little less modulation than our XP12™, but still maintains the rotor friendliness of our XP™ series compounds. RP2™ has great fade resistance with a temperature range of 250°F to 1450°F+ (121°C to 787°C). RP2™ is as rotor friendly as our XP™ series compounds. NOT FOR STREET USE!
Carbotech XP8
A high torque brake compound with a wide operating temperature range of 200°F-1250°F+ (93°C to 676°C+). Carbotech™ XP8™ is their first racing compound. It provides good initial bite at race temperatures, high coefficient of friction, excellent modulation, and release characteristics. XP8™ offers extremely high fade resistance and is very rotor friendly. It's perfect for track day use with any tire. NOT FOR STREET USE!
Carbotech XP10
When Carbotech™ unleashed the XP10™ it immediately gathered multiple regional, divisional, and national championships. The XP10™ has a strong initial bite with a coefficient of friction and rotor friendliness unmatched in the industry. Fade resistance is in excess of 1475°F (801°C). XP10™ still maintains the highly-praised release, excellent modulation and rotor friendliness that have made all Carbotech™ compounds so successful. NOT FOR STREET USE!
Carbotech XP12
Another highly successful XP™ series compound with an excellent initial bite, torque and fade resistance over and above the XP10™ compound. XP12™ has a temperature range of 250°F to 1850°F+ (121°C to 1010°C+). The XP12™ has that excellent Carbotech™ release and modulation that has made all other Carbotech™ compounds so successful. The XP12™ is more rotor aggressive than XP10™ but compared to the competition the XP12™ is still very rotor friendly. NOT FOR STREET USE!
Carbotech XP20
XP20™ is the latest iteration of the highly successful XP™ series of compounds. With an extremely aggressive initial bite, linear torque curve and excellent fade resistance the XP20™ is a major step in a progression of the XP™ series of compounds from Carbotech™. XP20™ has a temperature range of 275°F to 2000°F+ (135°C to 1093°C+). Carbotech™ XP20™ maintains our tradition of having the outstanding release and modulation that has made all other Carbotech™ compounds so successful. NOT FOR STREET USE!
Carbotech XP24
XP24™ is the pinnacle compound of the extremely successful XP™ Series of compounds engineered by Carbotech™. This compound is based on the same fundamentals that exist in all other Carbotech™ formulations. XP24™ has even more initial bite, more overall bite, and more torque along with the most linear torque curve we have ever offered. The thermal characteristics are of the highest Carbotech™ offers along with one of the highest coefficient of friction ratings offered by anyone in the braking industry. This compound is the longest wearing compound Carbotech™ offers as it was originally engineered for endurance applications at the highest pro racing levels. This revolutionary new compound has been extremely successful with an open wheel, closed wheel, sprint, and endurance applications. XP24™ has a temperature range of 400°F to 2000°F+ (204°C to 1093°C+). NOT FOR STREET USE!
Carbotech CT1405 Frequently Asked Questions (FAQ)
1. Which Carbotech compound is best for daily driving?
1521 is ideal for spirited street use with minimal dust and noise..
2. What’s the best compound for beginner HPDE drivers?
XP8 is a great starting point for advanced HPDE, offering strong bite and fade resistance without being overly aggressive.
3. Can I mix Carbotech compounds front and rear?
Yes, many drivers use a more aggressive compound in the front (e.g., XP12) and a slightly less aggressive one in the rear (e.g., XP10) to fine-tune balance.
4. Are Carbotech pads hard on rotors?
No. All Carbotech compounds are known for being rotor-friendly, helping reduce rotor wear and operating costs.
5. Which compound is best for endurance racing?
RP2 is engineered specifically for long-distance events where pad and rotor life are just as important as torque output.
6. Do Carbotech pads require special bedding procedures?
Yes. A proper bedding-in process is critical for optimal performance. Carbotech provides detailed bedding instructions with every set of pads.
Carbotech Brake Pad Bedding Procedures
The bedding process transfers friction material from the pads into the pores of the brake rotor. It also matches the microscopic contours of the pads and rotors to increase surface contact. Proper bedding of pads & rotors will result in greater performance, longer pad life & less rotor wear. Failure to properly bed in your pads could lead to friction materials chunking and breaking up. This could also lead to overheating your pads and causing them to glaze over resulting in the car not being able to stop or slow fast enough.
All new brake pads require a bedding process. The proper way to bed your brake pads and brake discs (rotors) is to bed them on the racetrack, NOT on the street. Start this process by pumping your brakes a few times to assure proper installation. Once on track perform several moderate (medium) near stops (to a very slow rolling speed) to thoroughly warm up the pads and rotors. This should take 1-2 laps. This allows a thin layer of the pad material to be transferred into the micro-grooves of the rotor.
After the pads/rotors are warm, perform a series of hard near stops (to a slow rolling speed) until some brake fade is felt. This process should take about 2-4 laps (depending on the track). Once this occurs, then stay off the brakes (as much as possible) and bring your car into the pits/paddock to completely cool. Do not lock the tires during this operation.
Allow brake pads and/or rotors cool down to ambient temperatures; no less than 30 minutes. The total bedding procedure should not take more than 5-6 laps or about 10-15 minutes. Failure to properly bed in your pads could cause friction material to chunk and break up resulting in poor pad performance and pad life. Improper bedding can also lead to overheating your pads and causing them to glaze over, resulting in the car not being able to stop or slow properly.